
morango Documentation

Learning Equality

Mar 18, 2024





CONTENTS

1 Overview 3
1.1 Motivating user story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Usage in Kolibri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Architecture 5
2.1 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Syncable models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Filters and scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Session controller, contexts, and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Syncing 13
3.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 IDs and Counters 17
4.1 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Merging 19
5.1 Fast-forward merges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Merge conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Deletion 21
6.1 Soft-deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Hard-deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 API 23
7.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Sync sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3 Viewsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Python Module Index 55

Index 57

i



ii



morango Documentation

Morango is a Django database replication engine written in pure Python. It is designed and maintained in support of
the Kolibri product ecosystem.

CONTENTS 1

https://github.com/learningequality/kolibri/


morango Documentation

2 CONTENTS



CHAPTER

ONE

OVERVIEW

Morango is a pure-Python database replication engine for Django that supports peer-to-peer syncing of data. It is
structured as a Django app that can be included in projects to make specific application models syncable.

Developed in support of the Kolibri product ecosystem, Morango includes some important features including:

• A certificate-based authentication system to protect privacy and integrity of data

• A change-tracking system to support calculation of differences between databases across low-bandwidth connec-
tions

• A set of constructs to support data partitioning

1.1 Motivating user story

Imagine a scenario where we have four instances of Kolibri:

• Home is a tablet used at home by a learner with no internet access

• Facility is a laptop at a nearby school, also with no internet access

• City is a laptop in a nearby city

• Cloud is a server online in the cloud

On Facility, a coach assigns resources to a learner’s user account. The learner brings Home to the school and syncs
with Facility, getting only their assignments and no private data about other learners.

The learner uses Home for a week, engaging with the assigned resources. They (and other learners) bring their tablets
back to school and sync again with Facility. The coach can now see the recent user engagement data for their class.

An admin user wants to get the recent user engagement data from the Facility device onto their City device. In order to
achieve this, the admin may bring City to the remote area. Once City arrives in the remote area, Facility and City can
sync over the school’s local network.

Finally, the admin brings City back to the city and syncs with Cloud over the internet. At this point, Facility, City, and
Cloud all have the same data. Now, imagine a second admin in another city syncs their own laptop (City 2) with Cloud.
Now they too would have the recent data from Facility.

3

https://github.com/learningequality/kolibri/


morango Documentation

1.2 Objectives

• User experience: Streamline the end-user syncing process as much as possible

• Privacy: Only sync data to devices and users authorized to access that data

• Flexibility: Afford the ability to sync only a subset of the data

• Efficiency: Minimize storage, bandwidth, and processing power

• Integrity: Protect data from accidental and malicious data corruption

• Peer-to-peer: Devices should be able to communicate without a central server

• Eventual consistency: Eventually all devices will converge to the same data

1.3 Usage in Kolibri

Morango is not the only way that Kolibri instances communicate with each other and other services. Some other ways
Kolibri communicates are:

• Discovering other Kolibri instances with Zeroconf

• Calling REST APIs for getting meta-information about discovered Kolibri instances

• Calling REST APIs for sending anonymous usage statistics to an LE telemetry server

• Calling REST APIs for browsing content available for import from Studio and other Kolibri instances

• Downloading static channel database and media files from Studio and other Kolibri instances

Morango’s certificate, change-tracking, and partitioning features are useful especially in situations where diff-based
updates and guarantees about distributed data consistency and coherence are useful.

4 Chapter 1. Overview



CHAPTER

TWO

ARCHITECTURE

2.1 Profiles

A profile is a unique, semantically meaningful name within the Kolibri ecosystem. It corresponds to a set of interrelated
syncable models that “make sense” when synced together.

Currently there is just a single profile in the Kolibri ecosystem: facilitydata.

2.2 Syncable models

A syncable model is a Django model which can be synced between devices using Morango. Every syncable model is
associated with exactly one profile, and exactly one partition within the profile.

To make a Django model syncable, inherit from SyncableModel. All subclasses need to define:

• morango_profile - the name of the model’s profile

• morango_model_name - a unique name within the profile

• calculate_source_id - a method that returns a unique ID of the record

• calculate_partition - a method that returns the partition string of the record

There are some constraints to Django models that are serialized and synced in Morango:

• models must not have self-referential foreign keys or dependency loops

• models must not use relationships based on Django generic foreign keys

• models must not use many-to-many relationships

In order to ensure that schema migrations work cleanly, always provide default values when defining model fields on
syncable models.

If you create custom querysets or managers and your model inherits from SyncableModel, then your custom classes
should also inherit from SyncableModelQuerySet or SyncableModelManager in order to maintain syncability for
these models.

In Kolibri, we currently define a base SyncableModel called FacilityDataSyncableModel. Both
FacilityDataset and AbstractFacilityDataModel inherit from this. In turn, other syncable Kolibri models
inherit from AbstractFacilityDataModel as shown below:

5

https://docs.djangoproject.com/en/1.11/ref/contrib/contenttypes/#django.contrib.contenttypes.fields.GenericForeignKey
https://docs.djangoproject.com/en/1.11/topics/db/examples/many_to_many/


morango Documentation

2.3 Partitions

A partition is a string that defines a subset of the syncable models in a profile. Taken together, the partitions of a profile
define mutually exclusive and complete segmented coverage of all syncable model records.

Partition strings use colon characters to delimit levels of a hierarchy, and Python template strings to dynamically insert
source IDs of models. Aside from this, Morango places no constraints on the structure of partition strings, and they can
be constructed using any convention or strategy. A leading part part of a colon-delimited partition string designating
some parent partition is called a partition prefix.

As a hypothetical example, a record for a syncable model like a content interaction log might be associated with a
syncable user in a syncable facility. The combination of the user ID and the facility ID could be used to dynamically
define a partition like ${facility_id}:${user_id} for that and other similar records. “Containment” of partitions
in the hierarchy can be checked with a simple Python startswith string check between partitions. In the example
above, the partition ${facility_id}:${user_id} is said to be contained by the partition ${facility_id} for user
U1 in facility F1 because "F1:U1".startswith("F1") == True and F1 is the partition prefix.

In Kolibri, we currently have five mutually-exclusive partitions in the facilitydata profile, where the source ID of
the facility is the dataset_id:

• everyone has write-only access
– partition string: ${dataset_id}:anonymous

6 Chapter 2. Architecture

https://docs.python.org/3/library/string.html#template-strings


morango Documentation

– used for content session logs

• all authenticated users have read-only access
– partition string: ${dataset_id}:allusers-ro

– used for facility metadata, classes, and other collections

• a learner has personalized read-only access
– partition string: ${dataset_id}:user-ro:${user_id}

– used for user roles and membership in classes and groups

• a learner has personalized read and write access
– partition string: ${dataset_id}:user-rw:${user_id}

– used for content interaction logs

• everything else
– partition string: ${dataset_id}

– used for quizzes and lessons

Note that all facility models share the prefix ${dataset_id}, which means that they are all “contained” in that top-level
partition.

2.4 Filters and scopes

A filter is a set of partition prefixes represented as an end-line-delimited string. A scope is a set of filters which defines
the permissions conferred by a certificate and stored in a ScopeDefinition object.

When designing scopes – i.e. composing scopes from filters and partitions – care must be taken to ensure that foreign
keys in synced models refer to other models that were also synced in the same scope. Otherwise, an alternative would
be to ensure that the application can gracefully handle missing records when necessary because there would be no
guarantee of coherence.

As of this writing, there are currently two scope definitions defined in Kolibri for the facilitydata profile:

• The full-facility scope provides full read and write access to all data related to a facility. This includes the
facility model itself plus associated classes, lessons, users, groups, content interaction logs, and everything else
related to running a typical Kolibri classroom server.

• The single-user scope provides some of the access needed by a single learner, specifically the content inter-
action logs. Note that this does not currently include all necessary data. For example, lessons that have been
assigned to the user are not in this scope, and must currently be synced through another mechanism (as yet to be
determined).

Kolibri’s scope definition fixture is shown below. Here, note that the single-user scope allows the user to write
content-related logs and to read other facility data so that Kolibri is still able to function properly.

[
{
"model": "morango.scopedefinition",
"pk": "full-facility",
"fields": {
"profile": "facilitydata",
"version": 1,
"primary_scope_param_key": "dataset_id",

(continues on next page)

2.4. Filters and scopes 7

https://github.com/learningequality/kolibri/blob/bd3fe9a04e21e446da39fed92e83c75e11ef1714/kolibri/core/auth/fixtures/scopedefinitions.json


morango Documentation

(continued from previous page)

"description": "Allows full syncing for data under the Facility with␣
→˓FacilityDataset ID ${dataset_id}.",

"read_filter_template": "",
"write_filter_template": "",
"read_write_filter_template": "${dataset_id}"

}
},
{
"model": "morango.scopedefinition",
"pk": "single-user",
"fields": {
"profile": "facilitydata",
"version": 1,
"primary_scope_param_key": "",
"description": "Allows syncing data for FacilityUser ${user_id} under Facility␣

→˓with FacilityDataset ID ${dataset_id}.",
"read_filter_template": "${dataset_id}:allusers-ro\n${dataset_id}:user-ro:${user_

→˓id}",
"write_filter_template": "${dataset_id}:anonymous",
"read_write_filter_template": "${dataset_id}:user-rw:${user_id}"

}
}

]

2.5 Certificates

Certificates are hierarchical pairs of private/public keys that grant device-level permission to sync data within a filtered
scope of a profile. Once a device has been granted access to a scope of a profile, that device can grant that scope or a
subset of it to other devices by generating child certificate pairs.

Scope access and the chain of trust are established as follows:

• The private key associated with a parent certificate can be used to issue a child certificate to another device with
at most the permission granted by the scope of the parent certificate

• The child certificate can be used by the new device to allow it to prove to other devices that it is authorized to
access the scope

• The entire chain of signed certificates back to the origin must be exchanged during sync between devices, and
the signatures and hierarchy must be verified

In the example below, Instance A is able to establish a future sync relationship with Instance B by providing admin
credentials to Instance B and requesting a signed certificate:

8 Chapter 2. Architecture



morango Documentation

It should be cautioned that there is currently no mechanism for revoking certificates. This means that a stolen or hijacked
device will have access to all data it has been granted, and updates to that data when another device is on the same
network.

In Kolibri, on the FacilityDataset model, we generate the certificate as a function of the calculate_source_id
method. Note that we currently set the ID of the certificate to be the same as the ID of the facility model. This allows
queries on the certificate hierarchy tree to find certificates that are associated with the facility.

There’s flexibility in the application layer for determining the validity of a root certificate, and it’s specified on a per-
profile basis. For the facilitydata profile, Kolibri leverages its auth models for this.

2.5. Certificates 9



morango Documentation

2.6 Session controller, contexts, and operations

A unidirectional sync has several stages: INITIALIZING, SERIALIZING, QUEUING, TRANSFERRING, DEQUEUING,
DESERIALIZING, and CLEANUP. Each stage requires callable objects, referred to here simply as operations. Operations
handle the necessary operational aspects of the transfer for each stage. The SessionController class establishes an
internal API for invoking those operations through a Chain-of-responsibility software design pattern. Provided with
a context, either a LocalSessionContext or a NetworkSessionContext, the controller will iterate through each
incomplete stage and invoke the operations for stage, passing along the context object. An operation isn’t required
to handle the context, which is analogous to a request object, but can defer responsibility to the next operation in the
stage’s list of operations by returning False. At least one operation must handle the context, which is communicated
by returning a transfer_statuses constant of either PENDING, STARTED, ERRORED, or COMPLETED.

10 Chapter 2. Architecture



morango Documentation

The list of operations for each stage are configured through Django settings. The configuration key for each stage
follows the pattern MORANGO_%STAGE%_OPERATIONS, so the list/tuple of operations for the QUEUING stage access the
MORANGO_QUEUING_OPERATIONS configuration value. Built-in operations implement a callable BaseOperation class
by overriding a handle method. The BaseOperation class supports raising an AssertionError to defer responsi-
bility to the next operation.

2.6. Session controller, contexts, and operations 11



morango Documentation

12 Chapter 2. Architecture



CHAPTER

THREE

SYNCING

3.1 Concepts

The store holds serialized versions of syncable models. This includes both data that is on the current device and data
synced from other devices.

The outgoing buffer and incoming buffer mirror the schema of the store. They also include a transfer session ID
which used to identify sets of data that are being synced as a coherent group to other Morango instances.

3.2 Process

Syncing is the actual exchange of data in a sync session. The general steps for syncing data are:

1. Serialization - serializing data that is associated with Django models in the Application layer, and storing it in
JSON format in a record in the Store

2. Queuing/Buffering - storing serialized records and their modification history to a separate Buffers data structure

3. Transfer/chunking of data - the actual transfer of data over a request/response cycle in chunks of 500 records
at a time

4. Dequeuing - merging the data received in the receiving buffers to the receiving store and record-max counter

5. Deserialization - merging data from the receiving Store into the Django models in the Application layer

In the illustration below, the application layer (on the right) is where app data resides as Django models, and the
Morango layer (on the left) is where the Morango stores, counters, and buffers reside. Instance A (on the top) is
sending data to Instance B (on the bottom). Application Django models in Instance A are serialized in JSON format
and saved to the store. Data is queued in the buffers on Instance A, and then transmitted to the corresponding buffers
on Instance B. The data is then integrated into the store and Django app models on Instance B.

13



morango Documentation

3.3 Orchestration

In order to facilitate synchronization between several Morango instances, it can be convenient to create a Django
management command which uses the Morango machinery.

For example, in Kolibri we have created a management command called kolibri manage sync. Note that any time this
command is run, we always both pull and push, which guarantees that both Kolibri databases will have the same data
afterwards.

Of particular importance is the MorangoProfileController which can create a NetworkSyncConnection with
another Morango instance.

Once the client establishes a network connection, both instances must exchange certificates so that they can prove that
they have the proper permissions in order to push or pull the data. If the client side lacks the proper certificates, they
should use the network connection to do a certificate_signing_request, where they enter admin credentials of
the other instance to generate a certificate with the valid permissions.

Once both sides have the proper certificates, the client can initiate a sync session with create_sync_session. This
creates a SyncClient that can handle either pushing or pulling data to/from the other Morango instance.

14 Chapter 3. Syncing

https://github.com/learningequality/kolibri/blob/91ddf6fe8e9404fd54278d91dc6d43b9540ea327/kolibri/core/auth/management/commands/sync.py


morango Documentation

3.4 Signals

During the sync process, Morango fires a few different signals from signals in PullClient and PushClient. These
can be used to track the progress of the sync.

There are four signal groups:

• session

• queuing

• transferring

• dequeuing

Each signal group has 3 stages that can be fired:

• started

• in_progress

• completed

For a push or pull sync lifecycle, the order of the fired signals would be as follows:

1) Session started

2) Queuing started

3) Queueing completed

4) Transferring started

5) Transferring in progress

6) Transferring completed

7) Dequeuing started

8) Dequeuing completed

9) Session completed

3.4. Signals 15



morango Documentation

16 Chapter 3. Syncing



CHAPTER

FOUR

IDS AND COUNTERS

4.1 Identifiers

There is generally one Morango instance for every Kolibri instance, and each of these are identified by a unique Morango
instance ID. The instance ID is calculated as a function of a number of system properties, and will change when those
properties change. Changes to the instance ID are not fatal, but stability is generally preferable.

The database ID identifies the actual database being used by a Morango instance. If a database has been backed up
and restored or copied to a different Morango instance, a new database ID should be generated to help other Morango
instances that may have already seen the previous state of the database.

Each syncable model instance within the database is identified by a unique model source ID. This is calculated ran-
domly by default and takes the calculated partition and Morango model name into account. Models can also define
their own behavior by overriding calculate_source_id.

4.2 Counters

A counter is a monotonically increasing version number. Comparing two counter values associated with the same
object will show which one is newer.

Whenever a syncable model record is modified, a unique combination of the Morango instance ID and an incrementing
counter version are assigned to the record. This combination specifies the record version.

Morango instances use record-max counters to keep track of the maximum version each record has been saved at.
This is used to determine drive different merge behaviors during the sync process.

The database-max counter table tracks a mapping of scope filter strings to lists of (instance ID, counter) pairs. These
(instance ID, counter) pairs reflect different Morango instances that have been previously synced at some counter value.

Morango sends filter-max counters to determine what data is already shared before syncing to efficiently determine
the difference in data. Filter-max counters are the highest counters associated with every instance ID for both a filter
and its supersets.

17



morango Documentation

18 Chapter 4. IDs and Counters



CHAPTER

FIVE

MERGING

There are two possible cases for the merging of data: fast-forward merges and conflicts.

5.1 Fast-forward merges

A “fast-forward” data merge situation means that there is no conflict to resolve. This can be determined by checking if
the current version of a record on the receiving device is already contained in the history of the transmitting device, or
vice-versa.

In the illustration above:

1. Device A (green) produces a new record, r. It gets assigned record version A1 and history [ A1 ].

2. Next, Device A modifies r. The record version changes to A2 and the history is now [ A2, A1 ].

3. Device B (red) now syncs data with Device A and both the devices have same version and history of record r.

4. Device B modifies its copy of r and sets the record version to B1. The history of r is now [ B1, A2, A1 ] on
Device B and still [ A2, A1 ] on Device A.

5. When Device A syncs with Device B again (the arrow), there is no conflict and the update B1 can be incorporated
directly.

19



morango Documentation

5.2 Merge conflicts

A merge conflict means that two devices have made changes to a record, and it is not clear how to reconcile the two
change histories.

In the illustration above:

1. As above, Device A (green) produces a new record r with version A1 and history [ A1 ].

2. Device B (red) now syncs data with Device A and both the devices have same copy of record r.

3. Next, Device B modifies its copy of r. The record version changes to B1 and the history [ B1, A1 ].

4. Device A modifies its own copy of record r and saves it as A2 with history [ A2, A1 ].

5. When Device A syncs data with Device B again (the arrow), there is a conflict because both devices have modified
r.

It is up to the implementing application to determine what the merge conflict resolution strategy is.

20 Chapter 5. Merging



CHAPTER

SIX

DELETION

6.1 Soft-deletion

Typically, deletion merely hides records, rather than actually erasing data.

When a record for a subclass of SyncableModel is deleted, its ID is added to the DeletedModels table. When a
subsequent serialization occurs, this information is used to turn on the deleted flag in the store for that record. When
syncing with other Morango instances, the soft deletion will propagate to the store record of other instances.

This is considered a “soft-delete” in the store because the data is not actually cleared.

6.2 Hard-deletion

There are times, such as GDPR removal requests, when it’s necessary to actually to erase data.

This is handled using a HardDeletedModels table. Subclasses of SyncableModel should override the delete
method to take a hard_delete boolean, and add the record to the HardDeletedModels table when this is passed.

On serialization, Morango clears the serialized field entry in the store for records in HardDeletedModels and turns
on the hard_deleted flag. Upon syncing with other Morango instances, the hard deletion will propagate to the store
record of other instances.

21



morango Documentation

22 Chapter 6. Deletion



CHAPTER

SEVEN

API

7.1 Models

class morango.models.Buffer(*args, **kwargs)
Bases: AbstractStore

Buffer is where records from the internal store are queued up temporarily, before being sent to another morango
instance, or stored while being received from another instance, before dequeuing into the local store.

Parameters
• id (AutoField) – Id

• profile (CharField) – Profile

• serialized (TextField) – Serialized

• deleted (BooleanField) – Deleted

• hard_deleted (BooleanField) – Hard deleted

• last_saved_instance (UUIDField) – Last saved instance

• last_saved_counter (IntegerField) – Last saved counter

• partition (TextField) – Partition

• source_id (CharField) – Source id

• model_name (CharField) – Model name

• conflicting_serialized_data (TextField) – Conflicting serialized data

• _self_ref_fk (CharField) – self ref fk

• transfer_session_id (ForeignKey to ~) – Transfer session

• model_uuid (UUIDField) – Model uuid

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

23



morango Documentation

model_uuid

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

rmcb_list()

transfer_session

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

transfer_session_id

class morango.models.Certificate(id, parent, profile, scope_definition, scope_version, scope_params,
public_key, salt, serialized, signature, _private_key)

Bases: MPTTModel, UUIDModelMixin

Parameters
• id (UUIDField) – Id

• parent_id (ForeignKey to ~) – Parent

• profile (CharField) – Profile

• scope_definition_id (ForeignKey to ~) – Scope definition

• scope_version (IntegerField) – Scope version

• scope_params (TextField) – Scope params

• public_key (PublicKeyField) – Public key

• salt (CharField) – Salt

• serialized (TextField) – Serialized

• signature (TextField) – Signature

• _private_key (PrivateKeyField) – private key

• lft (PositiveIntegerField) – Lft

• rght (PositiveIntegerField) – Rght

• tree_id (PositiveIntegerField) – Tree id

• level (PositiveIntegerField) – Level

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

24 Chapter 7. API



morango Documentation

certificate_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

check_certificate()

classmethod deserialize(serialized, signature)

classmethod generate_root_certificate(scope_def_id, **extra_scope_params)

get_scope()

has_private_key()

level

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

lft

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

parent

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

parent_id

property private_key

profile

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

public_key

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

rght

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

7.1. Models 25



morango Documentation

salt

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod save_certificate_chain(cert_chain, expected_last_id=None)

scope_definition

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

scope_definition_id

scope_params

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

scope_version

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

serialize()

serialized

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

sign(value)

sign_certificate(cert_to_sign)

signature

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

syncsessions_client

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

syncsessions_server

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

26 Chapter 7. API



morango Documentation

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

tree_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

uuid_input_fields = ('public_key', 'profile', 'salt')

verify(value, signature)

class morango.models.DatabaseIDModel(*args, **kwargs)
Bases: UUIDModelMixin

Model to be used for tracking database ids.

Parameters
• id (UUIDField) – Id

• current (BooleanField) – Current

• date_generated (DateTimeField) – Date generated

• initial_instance_id (CharField) – Initial instance id

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

current

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

date_generated

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_next_by_date_generated(*, field=<django.db.models.fields.DateTimeField: date_generated>,
is_next=True, **kwargs)

classmethod get_or_create_current_database_id()

get_previous_by_date_generated(*, field=<django.db.models.fields.DateTimeField: date_generated>,
is_next=False, **kwargs)

initial_instance_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

instanceidmodel_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

7.1. Models 27



morango Documentation

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

objects = <morango.models.core.DatabaseIDManager object>

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

uuid_input_fields = 'RANDOM'

class morango.models.DatabaseMaxCounter(*args, **kwargs)
Bases: AbstractCounter

DatabaseMaxCounter is used to keep track of what data this database already has across all instances for a
particular partition prefix. Whenever 2 morango instances sync with each other we keep track of those partition
prefixes from the filters, as well as the maximum counter we received for each instance during the sync session.

Parameters
• id (AutoField) – Id

• instance_id (UUIDField) – Instance id

• counter (IntegerField) – Counter

• partition (CharField) – Partition

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

classmethod calculate_filter_specific_instance_counters(filters, is_producer=False,
v2_format=False)

classmethod get_instance_counters_for_partitions(partitions, is_producer=False)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

partition

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod update_fsics(fsics, sync_filter, v2_format=False)

28 Chapter 7. API



morango Documentation

class morango.models.DeletedModels(*args, **kwargs)
Bases: Model

DeletedModels helps us keep track of models that are deleted prior to serialization.

Parameters
• id (UUIDField) – Id

• profile (CharField) – Profile

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

profile

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class morango.models.Filter(template, params={})
Bases: object

contains_partition(partition)

is_subset_of(other)

class morango.models.HardDeletedModels(*args, **kwargs)
Bases: Model

HardDeletedModels helps us keep track of models where all their data must be purged (serialized is nullified).

Parameters
• id (UUIDField) – Id

• profile (CharField) – Profile

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

profile

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

7.1. Models 29



morango Documentation

class morango.models.InstanceIDModel(*args, **kwargs)
Bases: Model

InstanceIDModel is used to track what the current ID of this Morango instance is based on system properties.
If system properties change, the ID used to track the morango instance also changes. During serialization phase,
we associate the current instance ID, as well as its counter with all the records that were serialized at the time.

Parameters
• id (UUIDField) – Id

• platform (TextField) – Platform

• hostname (TextField) – Hostname

• sysversion (TextField) – Sysversion

• node_id (CharField) – Node id

• database_id (ForeignKey to ~) – Database

• counter (IntegerField) – Counter

• current (BooleanField) – Current

• db_path (CharField) – Db path

• system_id (CharField) – System id

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

counter

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

current

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

database

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

database_id

db_path

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod get_current_instance_and_increment_counter()

30 Chapter 7. API



morango Documentation

classmethod get_or_create_current_instance(clear_cache=False)
Get the instance model corresponding to the current system, or create a new one if the system is new or its
properties have changed (e.g. new MAC address).

get_proquint()

hostname

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

property instance_info

Getter to access custom instance info defined in settings :return: dict

node_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

platform

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

system_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

sysversion

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

uuid_input_fields = ('platform', 'hostname', 'sysversion', 'node_id', 'database_id',
'db_path')

class morango.models.Nonce(*args, **kwargs)
Bases: UUIDModelMixin

Stores temporary nonce values used for cryptographic handshakes during syncing. These nonces are requested
by the client, and then generated and stored by the server. When the client then goes to initiate a sync session, it
signs the nonce value using the private key from the certificate it is using for the session, to prove to the server
that it owns the certificate. The server checks that the nonce exists and hasn’t expired, and then deletes it.

Parameters
• id (UUIDField) – Id

• timestamp (DateTimeField) – Timestamp

• ip (CharField) – Ip

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

7.1. Models 31



morango Documentation

get_next_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>, is_next=True,
**kwargs)

get_previous_by_timestamp(*, field=<django.db.models.fields.DateTimeField: timestamp>,
is_next=False, **kwargs)

ip

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod use_nonce(nonce_value)

uuid_input_fields = 'RANDOM'

class morango.models.PrivateKeyField(*args, **kwargs)
Bases: RSAKeyBaseField

from_db_value(value, expression, connection)

get_prep_value(value)
Perform preliminary non-db specific value checks and conversions.

to_python(value)
Convert the input value into the expected Python data type, raising django.core.exceptions.ValidationError
if the data can’t be converted. Return the converted value. Subclasses should override this.

class morango.models.PublicKeyField(*args, **kwargs)
Bases: RSAKeyBaseField

from_db_value(value, expression, connection)

get_prep_value(value)
Perform preliminary non-db specific value checks and conversions.

to_python(value)
Convert the input value into the expected Python data type, raising django.core.exceptions.ValidationError
if the data can’t be converted. Return the converted value. Subclasses should override this.

class morango.models.RecordMaxCounter(*args, **kwargs)
Bases: AbstractCounter

RecordMaxCounter keeps track of the maximum counter each serialized record has been saved at, for each
instance that has modified it. This is used to determine fast-forwards and merge conflicts during the sync process.

Parameters
• id (AutoField) – Id

• instance_id (UUIDField) – Instance id

• counter (IntegerField) – Counter

• store_model_id (ForeignKey to ~) – Store model

32 Chapter 7. API



morango Documentation

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

store_model

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

store_model_id

class morango.models.RecordMaxCounterBuffer(*args, **kwargs)
Bases: AbstractCounter

RecordMaxCounterBuffer is where combinations of instance ID and counters (from RecordMaxCounter) are
stored temporarily, until they are sent or received by another morango instance.

Parameters
• id (AutoField) – Id

• instance_id (UUIDField) – Instance id

• counter (IntegerField) – Counter

• transfer_session_id (ForeignKey to ~) – Transfer session

• model_uuid (UUIDField) – Model uuid

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

model_uuid

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

7.1. Models 33



morango Documentation

transfer_session

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

transfer_session_id

class morango.models.Scope(definition, params)
Bases: object

is_subset_of(other)

class morango.models.ScopeDefinition(id, profile, version, primary_scope_param_key, description,
read_filter_template, write_filter_template,
read_write_filter_template)

Bases: Model

Parameters
• id (CharField) – Id

• profile (CharField) – Profile

• version (IntegerField) – Version

• primary_scope_param_key (CharField) – Primary scope param key

• description (TextField) – Description

• read_filter_template (TextField) – Read filter template

• write_filter_template (TextField) – Write filter template

• read_write_filter_template (TextField) – Read write filter template

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

certificate_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

34 Chapter 7. API



morango Documentation

description

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_description(params)

get_scope(params)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

primary_scope_param_key

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

profile

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

read_filter_template

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

read_write_filter_template

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod retrieve_by_id(scope_def_id)

version

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

write_filter_template

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class morango.models.SharedKey(*args, **kwargs)
Bases: Model

The public key is publically available via the api/morango/v1/publickey endpoint. Applications who would
like to allow certificates to be pushed to the server must also enable ALLOW_CERTIFICATE_PUSHING. Clients
generate a Certificate object and set the public_key field to the shared public key of the server.

Parameters
• id (AutoField) – Id

• public_key (PublicKeyField) – Public key

• private_key (PrivateKeyField) – Private key

• current (BooleanField) – Current

exception DoesNotExist

Bases: ObjectDoesNotExist

7.1. Models 35



morango Documentation

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

current

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

classmethod get_or_create_shared_key(force_new=False)
Create a shared public/private key pair for certificate pushing, if the settings allow.

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

private_key

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

public_key

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

class morango.models.Store(*args, **kwargs)
Bases: AbstractStore

Store is the concrete model where serialized data is persisted, along with metadata about counters and history.

Parameters
• profile (CharField) – Profile

• serialized (TextField) – Serialized

• deleted (BooleanField) – Deleted

• hard_deleted (BooleanField) – Hard deleted

• last_saved_instance (UUIDField) – Last saved instance

• last_saved_counter (IntegerField) – Last saved counter

• partition (TextField) – Partition

• source_id (CharField) – Source id

• model_name (CharField) – Model name

• conflicting_serialized_data (TextField) – Conflicting serialized data

• _self_ref_fk (CharField) – self ref fk

• id (UUIDField) – Id

• dirty_bit (BooleanField) – Dirty bit

• deserialization_error (TextField) – Deserialization error

• last_transfer_session_id (UUIDField) – Last transfer session id

exception DoesNotExist

Bases: ObjectDoesNotExist

36 Chapter 7. API



morango Documentation

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

deserialization_error

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

dirty_bit

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

last_transfer_session_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <morango.models.core.StoreManager object>

recordmaxcounter_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

class morango.models.SyncSession(*args, **kwargs)
Bases: Model

SyncSession holds metadata for a sync session which keeps track of initial settings and the current transfer
happening for this sync session.

Parameters
• id (UUIDField) – Id

• start_timestamp (DateTimeField) – Start timestamp

• last_activity_timestamp (DateTimeField) – Last activity timestamp

• active (BooleanField) – Active

• is_server (BooleanField) – Is server

• client_certificate_id (ForeignKey to ~) – Client certificate

• server_certificate_id (ForeignKey to ~) – Server certificate

• profile (CharField) – Profile

• connection_kind (CharField) – Connection kind

• connection_path (CharField) – Connection path

• client_ip (CharField) – Client ip

7.1. Models 37



morango Documentation

• server_ip (CharField) – Server ip

• client_instance_id (UUIDField) – Client instance id

• client_instance_json (TextField) – Client instance json

• server_instance_id (UUIDField) – Server instance id

• server_instance_json (TextField) – Server instance json

• extra_fields (TextField) – Extra fields

• process_id (IntegerField) – Process id

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

active

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

client_certificate

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

client_certificate_id

client_instance_data

client_instance_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

client_instance_json

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

client_ip

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

connection_kind

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

connection_path

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

38 Chapter 7. API



morango Documentation

extra_fields

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_connection_kind_display(*, field=<django.db.models.fields.CharField: connection_kind>)

get_next_by_last_activity_timestamp(*, field=<django.db.models.fields.DateTimeField:
last_activity_timestamp>, is_next=True, **kwargs)

get_next_by_start_timestamp(*, field=<django.db.models.fields.DateTimeField: start_timestamp>,
is_next=True, **kwargs)

get_previous_by_last_activity_timestamp(*, field=<django.db.models.fields.DateTimeField:
last_activity_timestamp>, is_next=False, **kwargs)

get_previous_by_start_timestamp(*, field=<django.db.models.fields.DateTimeField:
start_timestamp>, is_next=False, **kwargs)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

is_server

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

last_activity_timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

process_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

profile

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

server_certificate

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

server_certificate_id

server_instance_data

server_instance_id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

7.1. Models 39



morango Documentation

server_instance_json

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

server_ip

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

start_timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

transfersession_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

class morango.models.SyncableModel(*args, **kwargs)
Bases: UUIDModelMixin

SyncableModel is the base model class for syncing. Other models inherit from this class if they want to make
their data syncable across devices.

Parameters
• id (UUIDField) – Id

• _morango_dirty_bit (BooleanField) – morango dirty bit

• _morango_source_id (CharField) – morango source id

• _morango_partition (CharField) – morango partition

ID_PLACEHOLDER = '${id}'

class Meta

Bases: object

abstract = False

cached_clean_fields(fk_lookup_cache)
Immediately validates all fields, but uses a cache for foreign key (FK) lookups to reduce repeated queries
for many records with the same FK

Parameters
fk_lookup_cache – A dictionary to use as a cache to prevent querying the database if a FK
exists in the cache, having already been validated

calculate_partition()

Should return a string specifying this model instance’s partition, using self.ID_PLACEHOLDER in place
of its own ID, if needed.

40 Chapter 7. API



morango Documentation

calculate_source_id()

Should return a string that uniquely defines the model instance or None for a random uuid.

calculate_uuid()

Should return a 32-digit hex string for a UUID that is calculated as a function of a set of fields from the
model.

static compute_namespaced_id(partition_value, source_id_value, model_name)

deferred_clean_fields()

Calls .clean_fields() but excludes all foreign key fields and instead returns them as a dictionary for deferred
batch processing

Returns
A dictionary containing lists of `ForeignKeyReference`s keyed by the name of the model
being referenced by the FK

delete(using=None, keep_parents=False, hard_delete=False, *args, **kwargs)

classmethod deserialize(dict_model)
Returns an unsaved class object based on the valid properties passed in.

classmethod merge_conflict(current, push)

morango_fields_not_to_serialize = ()

morango_model_dependencies = ()

morango_profile = None

objects

save(update_dirty_bit_to=True, *args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

serialize()

All concrete fields of the SyncableModel subclass, except for those specifically blacklisted, are returned
in a dict.

class morango.models.SyncableModelManager(*args, **kwargs)
Bases: ManagerFromSyncableModelQuerySet

class morango.models.SyncableModelQuerySet(model=None, query=None, using=None, hints=None)
Bases: QuerySet

classmethod as_manager()

update(update_dirty_bit_to=True, **kwargs)
Update all elements in the current QuerySet, setting all the given fields to the appropriate values.

class morango.models.TransferSession(*args, **kwargs)
Bases: Model

TransferSession holds metadata that is related to a specific transfer (push/pull) session between 2 morango
instances.

Parameters

7.1. Models 41



morango Documentation

• id (UUIDField) – Id

• filter (TextField) – Filter

• push (BooleanField) – Push

• active (BooleanField) – Active

• records_transferred (IntegerField) – Records transferred

• records_total (IntegerField) – Records total

• bytes_sent (BigIntegerField) – Bytes sent

• bytes_received (BigIntegerField) – Bytes received

• sync_session_id (ForeignKey to ~) – Sync session

• start_timestamp (DateTimeField) – Start timestamp

• last_activity_timestamp (DateTimeField) – Last activity timestamp

• client_fsic (TextField) – Client fsic

• server_fsic (TextField) – Server fsic

• transfer_stage (CharField) – Transfer stage

• transfer_stage_status (CharField) – Transfer stage status

exception DoesNotExist

Bases: ObjectDoesNotExist

exception MultipleObjectsReturned

Bases: MultipleObjectsReturned

active

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

buffer_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

bytes_received

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

bytes_sent

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

client_fsic

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

42 Chapter 7. API



morango Documentation

delete_buffers()

Deletes Buffer and RecordMaxCounterBuffer model records by executing SQL directly against the database
for better performance

filter

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

get_filter()

get_next_by_last_activity_timestamp(*, field=<django.db.models.fields.DateTimeField:
last_activity_timestamp>, is_next=True, **kwargs)

get_next_by_start_timestamp(*, field=<django.db.models.fields.DateTimeField: start_timestamp>,
is_next=True, **kwargs)

get_previous_by_last_activity_timestamp(*, field=<django.db.models.fields.DateTimeField:
last_activity_timestamp>, is_next=False, **kwargs)

get_previous_by_start_timestamp(*, field=<django.db.models.fields.DateTimeField:
start_timestamp>, is_next=False, **kwargs)

get_touched_record_ids_for_model(model)

get_transfer_stage_display(*, field=<django.db.models.fields.CharField: transfer_stage>)

get_transfer_stage_status_display(*, field=<django.db.models.fields.CharField:
transfer_stage_status>)

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

last_activity_timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

objects = <django.db.models.manager.Manager object>

property pull

Getter for not push condition, which adds complexity in conditional statements

push

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

recordmaxcounterbuffer_set

Accessor to the related objects manager on the reverse side of a many-to-one relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Parent.children is a ReverseManyToOneDescriptor instance.

Most of the implementation is delegated to a dynamically defined manager class built by
create_forward_many_to_many_manager() defined below.

7.1. Models 43



morango Documentation

records_total

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

records_transferred

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

server_fsic

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

start_timestamp

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

sync_session

Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOne-
ToOneDescriptor subclass) relation.

In the example:

class Child(Model):
parent = ForeignKey(Parent, related_name='children')

Child.parent is a ForwardManyToOneDescriptor instance.

sync_session_id

transfer_stage

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

transfer_stage_status

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

update_state(stage=None, stage_status=None)

class morango.models.UUIDField(*args, **kwargs)
Bases: CharField

Adaptation of Django’s UUIDField, but with 32-char hex representation as Python representation rather than a
UUID instance.

deconstruct()

Return enough information to recreate the field as a 4-tuple:

• The name of the field on the model, if contribute_to_class() has been run.

• The import path of the field, including the class:e.g. django.db.models.IntegerField This should be the
most portable version, so less specific may be better.

• A list of positional arguments.

• A dict of keyword arguments.

Note that the positional or keyword arguments must contain values of the following types (including inner
values of collection types):

44 Chapter 7. API



morango Documentation

• None, bool, str, int, float, complex, set, frozenset, list, tuple, dict

• UUID

• datetime.datetime (naive), datetime.date

• top-level classes, top-level functions - will be referenced by their full import path

• Storage instances - these have their own deconstruct() method

This is because the values here must be serialized into a text format (possibly new Python code, possibly
JSON) and these are the only types with encoding handlers defined.

There’s no need to return the exact way the field was instantiated this time, just ensure that the resulting
field is the same - prefer keyword arguments over positional ones, and omit parameters with their default
values.

from_db_value(value, expression, connection)

get_db_prep_value(value, connection, prepared=False)
Return field’s value prepared for interacting with the database backend.

Used by the default implementations of get_db_prep_save().

get_default()

Returns the default value for this field.

get_internal_type()

prepare_value(value)

to_python(value)
Convert the input value into the expected Python data type, raising django.core.exceptions.ValidationError
if the data can’t be converted. Return the converted value. Subclasses should override this.

class morango.models.UUIDModelMixin(*args, **kwargs)
Bases: Model

Mixin for Django models that makes the primary key “id” into a UUID, which is calculated as a function of
jointly unique parameters on the model, to ensure consistency across instances.

Parameters
id (UUIDField) – Id

class Meta

Bases: object

abstract = False

calculate_uuid()

Should return a 32-digit hex string for a UUID that is calculated as a function of a set of fields from the
model.

id

A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is
executed.

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL insert
or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

7.1. Models 45



morango Documentation

uuid_input_fields = None

7.2 Sync sessions

class morango.sync.session.SessionWrapper

Bases: Session

Wrapper around requests.sessions.Session in order to implement logging around all request errors.

bytes_received = 0

bytes_sent = 0

prepare_request(request)
Override request preparer so we can get the prepared content length, for tracking transfer sizes

Return type
requests.PreparedRequest

request(method, url, **kwargs)
Constructs a Request, prepares it and sends it. Returns Response object.

Parameters
• method – method for the new Request object.

• url – URL for the new Request object.

• params – (optional) Dictionary or bytes to be sent in the query string for the Request.

• data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body of
the Request.

• json – (optional) json to send in the body of the Request.

• headers – (optional) Dictionary of HTTP Headers to send with the Request.

• cookies – (optional) Dict or CookieJar object to send with the Request.

• files – (optional) Dictionary of 'filename': file-like-objects for multipart en-
coding upload.

• auth – (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth.

• timeout (float or tuple) – (optional) How long to wait for the server to send data
before giving up, as a float, or a (connect timeout, read timeout) tuple.

• allow_redirects (bool) – (optional) Set to True by default.

• proxies – (optional) Dictionary mapping protocol or protocol and hostname to the URL
of the proxy.

• stream – (optional) whether to immediately download the response content. Defaults to
False.

• verify – (optional) Either a boolean, in which case it controls whether we verify the
server’s TLS certificate, or a string, in which case it must be a path to a CA bundle to use.
Defaults to True. When set to False, requests will accept any TLS certificate presented
by the server, and will ignore hostname mismatches and/or expired certificates, which will
make your application vulnerable to man-in-the-middle (MitM) attacks. Setting verify to
False may be useful during local development or testing.

46 Chapter 7. API



morango Documentation

• cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.

Return type
requests.Response

reset_transfer_bytes()

Resets the bytes_sent and bytes_received values to zero

The main module to be used for initiating the synchronization of data between morango instances.

class morango.sync.syncsession.Connection

Bases: object

Abstraction around a connection with a syncing peer (network or disk), supporting interactions with that peer.
This may be used by a SyncClient, but also supports other operations (e.g. querying certificates) outside the
context of syncing.

This class should be subclassed for particular transport mechanisms, and the necessary methods overridden.

class morango.sync.syncsession.NetworkSyncConnection(base_url='', compresslevel=9, retries=7,
backoff_factor=0.3, chunk_size=500)

Bases: Connection

base_url

property bytes_received

property bytes_sent

capabilities

certificate_signing_request(parent_cert, scope_definition_id, scope_params, userargs=None,
password=None)

chunk_size

close()

close_sync_session(sync_session)

compresslevel

create_sync_session(client_cert, server_cert, chunk_size=None)
Starts a sync session by creating it on the server side and returning a client to use for initiating transfer
operations

Parameters
• client_cert (Certificate) – The local certificate to use, already registered with the

server

• server_cert (Certificate) – The server’s certificate that relates to the same profile as
local

• chunk_size (int) – An optional parameter specifying the size for each transferred chunk

Returns
A SyncSessionClient instance

Return type
SyncSessionClient

7.2. Sync sessions 47



morango Documentation

default_chunk_size = 500

get_remote_certificates(primary_partition, scope_def_id=None)

push_signed_client_certificate_chain(local_parent_cert, scope_definition_id, scope_params)

resume_sync_session(sync_session_id, chunk_size=None, ignore_existing_process=False)
Resumes an existing sync session given an ID

Parameters
• sync_session_id – The UUID of the SyncSession to resume

• chunk_size (int) – An optional parameter specifying the size for each transferred chunk

:param ignore_existing_process:An optional parameter specifying whether to ignore an
existing active process ID

Returns
A SyncSessionClient instance

Return type
SyncSessionClient

server_info

session

urlresolve(endpoint, lookup=None)

class morango.sync.syncsession.PullClient(*args, **kwargs)
Bases: TransferClient

Sync class to pull from server

context

controller

signals

sync_connection

sync_session

class morango.sync.syncsession.PushClient(*args, **kwargs)
Bases: TransferClient

Sync client for pushing to a server

context

controller

signals

sync_connection

sync_session

48 Chapter 7. API



morango Documentation

class morango.sync.syncsession.SyncClientSignals(**kwargs_defaults)
Bases: SyncSignal

Class for holding all signal types, attached to SyncClient as attribute. All groups are sent the TransferSession
object via the transfer_session keyword argument.

dequeuing = <morango.sync.utils.SyncSignalGroup object>

Dequeuing signal group for locally or remotely dequeuing data after transfer.

queuing = <morango.sync.utils.SyncSignalGroup object>

Queuing signal group for locally or remotely queuing data before transfer.

session = <morango.sync.utils.SyncSignalGroup object>

Signal group firing for each push and pull TransferSession.

transferring = <morango.sync.utils.SyncSignalGroup object>

Transferring signal group for tracking progress of push/pull on TransferSession.

class morango.sync.syncsession.SyncSessionClient(sync_connection, sync_session, controller=None)
Bases: object

close_sync_session()

Deprecated - Please use NetworkSyncConnection.close_sync_session and
NetworkSyncConnection.close

controller

get_pull_client()

returns PullClient

get_push_client()

returns PushClient

initiate_pull(sync_filter)
Deprecated - Please use get_pull_client and use the client :param sync_filter: Filter

initiate_push(sync_filter)
Deprecated - Please use get_push_client and use the client

signals

sync_connection

sync_session

class morango.sync.syncsession.TransferClient(sync_connection, sync_session, controller)
Bases: object

Base class for handling common operations for initiating syncing and other related operations.

context

controller

property current_transfer_session

finalize()

7.2. Sync sessions 49



morango Documentation

initialize(sync_filter)

Parameters
sync_filter – Filter

proceed_to_and_wait_for(stage, error_msg=None, callback=None)
Raises an exception if an ERROR result is received from calling proceed_to_and_wait_for :param stage:
The stage to proceed to :param error_msg: An error message str to use as the exception message if it errors
:param callback: A callback to pass along to the controller

run()

Execute the transferring portion of the sync

signals

sync_connection

sync_session

morango.sync.syncsession.compress_string(s, compresslevel=9)

7.3 Viewsets

class morango.api.viewsets.BufferViewSet(**kwargs)
Bases: ListModelMixin, GenericViewSet

create(request)

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

pagination_class

alias of LimitOffsetPagination

parser_classes = (<class 'morango.api.parsers.GzipParser'>, <class
'rest_framework.parsers.JSONParser'>)

permission_classes = (<class 'morango.api.permissions.BufferPermissions'>,)

serializer_class

alias of BufferSerializer

class morango.api.viewsets.CertificateChainViewSet(**kwargs)
Bases: ViewSet

create(request)

permissions = (<class 'morango.api.permissions.CertificatePushPermissions'>,)

50 Chapter 7. API



morango Documentation

class morango.api.viewsets.CertificateViewSet(**kwargs)
Bases: CreateModelMixin, RetrieveModelMixin, ListModelMixin, GenericViewSet

authentication_classes = (<class
'morango.api.permissions.BasicMultiArgumentAuthentication'>,)

create(request)

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

permission_classes = (<class 'morango.api.permissions.CertificatePermissions'>,)

serializer_class

alias of CertificateSerializer

class morango.api.viewsets.MorangoInfoViewSet(**kwargs)
Bases: ViewSet

retrieve(request, pk=None)

class morango.api.viewsets.NonceViewSet(**kwargs)
Bases: CreateModelMixin, GenericViewSet

create(request)

serializer_class

alias of NonceSerializer

class morango.api.viewsets.PublicKeyViewSet(**kwargs)
Bases: ReadOnlyModelViewSet

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

permission_classes = (<class 'morango.api.permissions.CertificatePushPermissions'>,)

serializer_class

alias of SharedKeySerializer

class morango.api.viewsets.SyncSessionViewSet(**kwargs)
Bases: DestroyModelMixin, RetrieveModelMixin, GenericViewSet

create(request)

7.3. Viewsets 51



morango Documentation

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

perform_destroy(syncsession)

serializer_class

alias of SyncSessionSerializer

class morango.api.viewsets.TransferSessionViewSet(**kwargs)
Bases: RetrieveModelMixin, UpdateModelMixin, DestroyModelMixin, GenericViewSet

async_allowed()

Returns
A boolean if async ops are allowed by client and self

create(request)

get_queryset()

Get the list of items for this view. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

This method should always be used rather than accessing self.queryset directly, as self.queryset gets eval-
uated only once, and those results are cached for all subsequent requests.

You may want to override this if you need to provide different querysets depending on the incoming request.

(Eg. return a list of items that is specific to the user)

perform_destroy(transfer_session)

serializer_class

alias of TransferSessionSerializer

update(request, *args, **kwargs)

morango.api.viewsets.controller_signal_logger(context=None)

morango.api.viewsets.get_ip(request)

7.4 Permissions

class morango.api.permissions.BasicMultiArgumentAuthentication

Bases: BasicAuthentication

HTTP Basic authentication against username (plus any other optional arguments) and password.

authenticate_credentials(userargs, password, request=None)
Authenticate the userargs and password against Django auth backends. The “userargs” string may be just
the username, or a querystring-encoded set of params.

52 Chapter 7. API



morango Documentation

class morango.api.permissions.BufferPermissions

Bases: BasePermission

has_permission(request, view)
Return True if permission is granted, False otherwise.

class morango.api.permissions.CertificatePermissions

Bases: BasePermission

has_permission(request, view)
Return True if permission is granted, False otherwise.

class morango.api.permissions.CertificatePushPermissions

Bases: BasePermission

has_permission(request, view)
Return True if permission is granted, False otherwise.

message = 'Server does not allow certificate pushing.'

7.4. Permissions 53



morango Documentation

54 Chapter 7. API



PYTHON MODULE INDEX

m
morango.api.permissions, 52
morango.api.viewsets, 50
morango.models, 23
morango.sync.session, 46
morango.sync.syncsession, 47

55



morango Documentation

56 Python Module Index



INDEX

A
abstract (morango.models.SyncableModel.Meta

attribute), 40
abstract (morango.models.UUIDModelMixin.Meta at-

tribute), 45
active (morango.models.SyncSession attribute), 38
active (morango.models.TransferSession attribute), 42
as_manager() (morango.models.SyncableModelQuerySet

class method), 41
async_allowed() (morango.api.viewsets.TransferSessionViewSet

method), 52
authenticate_credentials()

(morango.api.permissions.BasicMultiArgumentAuthentication
method), 52

authentication_classes
(morango.api.viewsets.CertificateViewSet
attribute), 51

B
base_url (morango.sync.syncsession.NetworkSyncConnection

attribute), 47
BasicMultiArgumentAuthentication (class in

morango.api.permissions), 52
Buffer (class in morango.models), 23
Buffer.DoesNotExist, 23
Buffer.MultipleObjectsReturned, 23
buffer_set (morango.models.TransferSession at-

tribute), 42
BufferPermissions (class in

morango.api.permissions), 52
BufferViewSet (class in morango.api.viewsets), 50
bytes_received (morango.models.TransferSession at-

tribute), 42
bytes_received (morango.sync.session.SessionWrapper

attribute), 46
bytes_received (morango.sync.syncsession.NetworkSyncConnection

property), 47
bytes_sent (morango.models.TransferSession at-

tribute), 42
bytes_sent (morango.sync.session.SessionWrapper at-

tribute), 46

bytes_sent (morango.sync.syncsession.NetworkSyncConnection
property), 47

C
cached_clean_fields()

(morango.models.SyncableModel method),
40

calculate_filter_specific_instance_counters()
(morango.models.DatabaseMaxCounter class
method), 28

calculate_partition()
(morango.models.SyncableModel method),
40

calculate_source_id()
(morango.models.SyncableModel method),
40

calculate_uuid() (morango.models.SyncableModel
method), 41

calculate_uuid() (morango.models.UUIDModelMixin
method), 45

capabilities (morango.sync.syncsession.NetworkSyncConnection
attribute), 47

Certificate (class in morango.models), 24
Certificate.DoesNotExist, 24
Certificate.MultipleObjectsReturned, 24
certificate_set (morango.models.Certificate at-

tribute), 24
certificate_set (morango.models.ScopeDefinition at-

tribute), 34
certificate_signing_request()

(morango.sync.syncsession.NetworkSyncConnection
method), 47

CertificateChainViewSet (class in
morango.api.viewsets), 50

CertificatePermissions (class in
morango.api.permissions), 53

CertificatePushPermissions (class in
morango.api.permissions), 53

CertificateViewSet (class in morango.api.viewsets),
50

check_certificate() (morango.models.Certificate
method), 25

57



morango Documentation

chunk_size (morango.sync.syncsession.NetworkSyncConnection
attribute), 47

client_certificate (morango.models.SyncSession
attribute), 38

client_certificate_id
(morango.models.SyncSession attribute),
38

client_fsic (morango.models.TransferSession at-
tribute), 42

client_instance_data (morango.models.SyncSession
attribute), 38

client_instance_id (morango.models.SyncSession
attribute), 38

client_instance_json (morango.models.SyncSession
attribute), 38

client_ip (morango.models.SyncSession attribute), 38
close() (morango.sync.syncsession.NetworkSyncConnection

method), 47
close_sync_session()

(morango.sync.syncsession.NetworkSyncConnection
method), 47

close_sync_session()
(morango.sync.syncsession.SyncSessionClient
method), 49

compress_string() (in module
morango.sync.syncsession), 50

compresslevel (morango.sync.syncsession.NetworkSyncConnection
attribute), 47

compute_namespaced_id()
(morango.models.SyncableModel static
method), 41

Connection (class in morango.sync.syncsession), 47
connection_kind (morango.models.SyncSession

attribute), 38
connection_path (morango.models.SyncSession

attribute), 38
contains_partition() (morango.models.Filter

method), 29
context (morango.sync.syncsession.PullClient at-

tribute), 48
context (morango.sync.syncsession.PushClient at-

tribute), 48
context (morango.sync.syncsession.TransferClient at-

tribute), 49
controller (morango.sync.syncsession.PullClient at-

tribute), 48
controller (morango.sync.syncsession.PushClient at-

tribute), 48
controller (morango.sync.syncsession.SyncSessionClient

attribute), 49
controller (morango.sync.syncsession.TransferClient

attribute), 49
controller_signal_logger() (in module

morango.api.viewsets), 52

counter (morango.models.InstanceIDModel attribute),
30

create() (morango.api.viewsets.BufferViewSet
method), 50

create() (morango.api.viewsets.CertificateChainViewSet
method), 50

create() (morango.api.viewsets.CertificateViewSet
method), 51

create() (morango.api.viewsets.NonceViewSet method),
51

create() (morango.api.viewsets.SyncSessionViewSet
method), 51

create() (morango.api.viewsets.TransferSessionViewSet
method), 52

create_sync_session()
(morango.sync.syncsession.NetworkSyncConnection
method), 47

current (morango.models.DatabaseIDModel attribute),
27

current (morango.models.InstanceIDModel attribute),
30

current (morango.models.SharedKey attribute), 36
current_transfer_session

(morango.sync.syncsession.TransferClient
property), 49

D
database (morango.models.InstanceIDModel attribute),

30
database_id (morango.models.InstanceIDModel

attribute), 30
DatabaseIDModel (class in morango.models), 27
DatabaseIDModel.DoesNotExist, 27
DatabaseIDModel.MultipleObjectsReturned, 27
DatabaseMaxCounter (class in morango.models), 28
DatabaseMaxCounter.DoesNotExist, 28
DatabaseMaxCounter.MultipleObjectsReturned,

28
date_generated (morango.models.DatabaseIDModel

attribute), 27
db_path (morango.models.InstanceIDModel attribute),

30
deconstruct() (morango.models.UUIDField method),

44
default_chunk_size (morango.sync.syncsession.NetworkSyncConnection

attribute), 47
deferred_clean_fields()

(morango.models.SyncableModel method),
41

delete() (morango.models.SyncableModel method), 41
delete_buffers() (morango.models.TransferSession

method), 42
DeletedModels (class in morango.models), 28
DeletedModels.DoesNotExist, 29

58 Index



morango Documentation

DeletedModels.MultipleObjectsReturned, 29
dequeuing (morango.sync.syncsession.SyncClientSignals

attribute), 49
description (morango.models.ScopeDefinition at-

tribute), 34
deserialization_error (morango.models.Store at-

tribute), 37
deserialize() (morango.models.Certificate class

method), 25
deserialize() (morango.models.SyncableModel class

method), 41
dirty_bit (morango.models.Store attribute), 37

E
extra_fields (morango.models.SyncSession attribute),

38

F
Filter (class in morango.models), 29
filter (morango.models.TransferSession attribute), 43
finalize() (morango.sync.syncsession.TransferClient

method), 49
from_db_value() (morango.models.PrivateKeyField

method), 32
from_db_value() (morango.models.PublicKeyField

method), 32
from_db_value() (morango.models.UUIDField

method), 45

G
generate_root_certificate()

(morango.models.Certificate class method), 25
get_connection_kind_display()

(morango.models.SyncSession method), 39
get_current_instance_and_increment_counter()

(morango.models.InstanceIDModel class
method), 30

get_db_prep_value() (morango.models.UUIDField
method), 45

get_default() (morango.models.UUIDField method),
45

get_description() (morango.models.ScopeDefinition
method), 35

get_filter() (morango.models.TransferSession
method), 43

get_instance_counters_for_partitions()
(morango.models.DatabaseMaxCounter
class method), 28

get_internal_type() (morango.models.UUIDField
method), 45

get_ip() (in module morango.api.viewsets), 52
get_next_by_date_generated()

(morango.models.DatabaseIDModel method),
27

get_next_by_last_activity_timestamp()
(morango.models.SyncSession method), 39

get_next_by_last_activity_timestamp()
(morango.models.TransferSession method),
43

get_next_by_start_timestamp()
(morango.models.SyncSession method), 39

get_next_by_start_timestamp()
(morango.models.TransferSession method),
43

get_next_by_timestamp() (morango.models.Nonce
method), 31

get_or_create_current_database_id()
(morango.models.DatabaseIDModel class
method), 27

get_or_create_current_instance()
(morango.models.InstanceIDModel class
method), 30

get_or_create_shared_key()
(morango.models.SharedKey class method), 36

get_prep_value() (morango.models.PrivateKeyField
method), 32

get_prep_value() (morango.models.PublicKeyField
method), 32

get_previous_by_date_generated()
(morango.models.DatabaseIDModel method),
27

get_previous_by_last_activity_timestamp()
(morango.models.SyncSession method), 39

get_previous_by_last_activity_timestamp()
(morango.models.TransferSession method), 43

get_previous_by_start_timestamp()
(morango.models.SyncSession method), 39

get_previous_by_start_timestamp()
(morango.models.TransferSession method),
43

get_previous_by_timestamp()
(morango.models.Nonce method), 32

get_proquint() (morango.models.InstanceIDModel
method), 31

get_pull_client() (morango.sync.syncsession.SyncSessionClient
method), 49

get_push_client() (morango.sync.syncsession.SyncSessionClient
method), 49

get_queryset() (morango.api.viewsets.BufferViewSet
method), 50

get_queryset() (morango.api.viewsets.CertificateViewSet
method), 51

get_queryset() (morango.api.viewsets.PublicKeyViewSet
method), 51

get_queryset() (morango.api.viewsets.SyncSessionViewSet
method), 51

get_queryset() (morango.api.viewsets.TransferSessionViewSet
method), 52

Index 59



morango Documentation

get_remote_certificates()
(morango.sync.syncsession.NetworkSyncConnection
method), 48

get_scope() (morango.models.Certificate method), 25
get_scope() (morango.models.ScopeDefinition

method), 35
get_touched_record_ids_for_model()

(morango.models.TransferSession method),
43

get_transfer_stage_display()
(morango.models.TransferSession method),
43

get_transfer_stage_status_display()
(morango.models.TransferSession method),
43

H
HardDeletedModels (class in morango.models), 29
HardDeletedModels.DoesNotExist, 29
HardDeletedModels.MultipleObjectsReturned, 29
has_permission() (morango.api.permissions.BufferPermissions

method), 53
has_permission() (morango.api.permissions.CertificatePermissions

method), 53
has_permission() (morango.api.permissions.CertificatePushPermissions

method), 53
has_private_key() (morango.models.Certificate

method), 25
hostname (morango.models.InstanceIDModel attribute),

31

I
id (morango.models.Buffer attribute), 23
id (morango.models.DatabaseMaxCounter attribute), 28
id (morango.models.DeletedModels attribute), 29
id (morango.models.HardDeletedModels attribute), 29
id (morango.models.InstanceIDModel attribute), 31
id (morango.models.RecordMaxCounter attribute), 33
id (morango.models.RecordMaxCounterBuffer at-

tribute), 33
id (morango.models.ScopeDefinition attribute), 35
id (morango.models.SharedKey attribute), 36
id (morango.models.Store attribute), 37
id (morango.models.SyncSession attribute), 39
id (morango.models.TransferSession attribute), 43
id (morango.models.UUIDModelMixin attribute), 45
ID_PLACEHOLDER (morango.models.SyncableModel at-

tribute), 40
initial_instance_id

(morango.models.DatabaseIDModel attribute),
27

initialize() (morango.sync.syncsession.TransferClient
method), 49

initiate_pull() (morango.sync.syncsession.SyncSessionClient
method), 49

initiate_push() (morango.sync.syncsession.SyncSessionClient
method), 49

instance_info (morango.models.InstanceIDModel
property), 31

InstanceIDModel (class in morango.models), 29
InstanceIDModel.DoesNotExist, 30
InstanceIDModel.MultipleObjectsReturned, 30
instanceidmodel_set

(morango.models.DatabaseIDModel attribute),
27

ip (morango.models.Nonce attribute), 32
is_server (morango.models.SyncSession attribute), 39
is_subset_of() (morango.models.Filter method), 29
is_subset_of() (morango.models.Scope method), 34

L
last_activity_timestamp

(morango.models.SyncSession attribute),
39

last_activity_timestamp
(morango.models.TransferSession attribute),
43

last_transfer_session_id (morango.models.Store
attribute), 37

level (morango.models.Certificate attribute), 25
lft (morango.models.Certificate attribute), 25

M
merge_conflict() (morango.models.SyncableModel

class method), 41
message (morango.api.permissions.CertificatePushPermissions

attribute), 53
model_uuid (morango.models.Buffer attribute), 23
model_uuid (morango.models.RecordMaxCounterBuffer

attribute), 33
module

morango.api.permissions, 52
morango.api.viewsets, 50
morango.models, 23
morango.sync.session, 46
morango.sync.syncsession, 47

morango.api.permissions
module, 52

morango.api.viewsets
module, 50

morango.models
module, 23

morango.sync.session
module, 46

morango.sync.syncsession
module, 47

60 Index



morango Documentation

morango_fields_not_to_serialize
(morango.models.SyncableModel attribute), 41

morango_model_dependencies
(morango.models.SyncableModel attribute), 41

morango_profile (morango.models.SyncableModel at-
tribute), 41

MorangoInfoViewSet (class in morango.api.viewsets),
51

N
NetworkSyncConnection (class in

morango.sync.syncsession), 47
node_id (morango.models.InstanceIDModel attribute),

31
Nonce (class in morango.models), 31
Nonce.DoesNotExist, 31
Nonce.MultipleObjectsReturned, 31
NonceViewSet (class in morango.api.viewsets), 51

O
objects (morango.models.Buffer attribute), 24
objects (morango.models.DatabaseIDModel attribute),

28
objects (morango.models.DatabaseMaxCounter at-

tribute), 28
objects (morango.models.DeletedModels attribute), 29
objects (morango.models.HardDeletedModels at-

tribute), 29
objects (morango.models.InstanceIDModel attribute),

31
objects (morango.models.Nonce attribute), 32
objects (morango.models.RecordMaxCounter at-

tribute), 33
objects (morango.models.RecordMaxCounterBuffer at-

tribute), 33
objects (morango.models.ScopeDefinition attribute), 35
objects (morango.models.SharedKey attribute), 36
objects (morango.models.Store attribute), 37
objects (morango.models.SyncableModel attribute), 41
objects (morango.models.SyncSession attribute), 39
objects (morango.models.TransferSession attribute), 43

P
pagination_class (morango.api.viewsets.BufferViewSet

attribute), 50
parent (morango.models.Certificate attribute), 25
parent_id (morango.models.Certificate attribute), 25
parser_classes (morango.api.viewsets.BufferViewSet

attribute), 50
partition (morango.models.DatabaseMaxCounter at-

tribute), 28
perform_destroy() (morango.api.viewsets.SyncSessionViewSet

method), 52

perform_destroy() (morango.api.viewsets.TransferSessionViewSet
method), 52

permission_classes (morango.api.viewsets.BufferViewSet
attribute), 50

permission_classes (morango.api.viewsets.CertificateViewSet
attribute), 51

permission_classes (morango.api.viewsets.PublicKeyViewSet
attribute), 51

permissions (morango.api.viewsets.CertificateChainViewSet
attribute), 50

platform (morango.models.InstanceIDModel attribute),
31

prepare_request() (morango.sync.session.SessionWrapper
method), 46

prepare_value() (morango.models.UUIDField
method), 45

primary_scope_param_key
(morango.models.ScopeDefinition attribute),
35

private_key (morango.models.Certificate property), 25
private_key (morango.models.SharedKey attribute), 36
PrivateKeyField (class in morango.models), 32
proceed_to_and_wait_for()

(morango.sync.syncsession.TransferClient
method), 50

process_id (morango.models.SyncSession attribute), 39
profile (morango.models.Certificate attribute), 25
profile (morango.models.DeletedModels attribute), 29
profile (morango.models.HardDeletedModels at-

tribute), 29
profile (morango.models.ScopeDefinition attribute), 35
profile (morango.models.SyncSession attribute), 39
public_key (morango.models.Certificate attribute), 25
public_key (morango.models.SharedKey attribute), 36
PublicKeyField (class in morango.models), 32
PublicKeyViewSet (class in morango.api.viewsets), 51
pull (morango.models.TransferSession property), 43
PullClient (class in morango.sync.syncsession), 48
push (morango.models.TransferSession attribute), 43
push_signed_client_certificate_chain()

(morango.sync.syncsession.NetworkSyncConnection
method), 48

PushClient (class in morango.sync.syncsession), 48

Q
queuing (morango.sync.syncsession.SyncClientSignals

attribute), 49

R
read_filter_template

(morango.models.ScopeDefinition attribute),
35

read_write_filter_template
(morango.models.ScopeDefinition attribute),

Index 61



morango Documentation

35
RecordMaxCounter (class in morango.models), 32
RecordMaxCounter.DoesNotExist, 32
RecordMaxCounter.MultipleObjectsReturned, 33
recordmaxcounter_set (morango.models.Store at-

tribute), 37
RecordMaxCounterBuffer (class in morango.models),

33
RecordMaxCounterBuffer.DoesNotExist, 33
RecordMaxCounterBuffer.MultipleObjectsReturned,

33
recordmaxcounterbuffer_set

(morango.models.TransferSession attribute),
43

records_total (morango.models.TransferSession at-
tribute), 43

records_transferred
(morango.models.TransferSession attribute),
44

request() (morango.sync.session.SessionWrapper
method), 46

reset_transfer_bytes()
(morango.sync.session.SessionWrapper
method), 47

resume_sync_session()
(morango.sync.syncsession.NetworkSyncConnection
method), 48

retrieve() (morango.api.viewsets.MorangoInfoViewSet
method), 51

retrieve_by_id() (morango.models.ScopeDefinition
class method), 35

rght (morango.models.Certificate attribute), 25
rmcb_list() (morango.models.Buffer method), 24
run() (morango.sync.syncsession.TransferClient

method), 50

S
salt (morango.models.Certificate attribute), 25
save() (morango.models.DatabaseIDModel method), 28
save() (morango.models.SyncableModel method), 41
save() (morango.models.UUIDModelMixin method), 45
save_certificate_chain()

(morango.models.Certificate class method), 26
Scope (class in morango.models), 34
scope_definition (morango.models.Certificate

attribute), 26
scope_definition_id (morango.models.Certificate at-

tribute), 26
scope_params (morango.models.Certificate attribute),

26
scope_version (morango.models.Certificate attribute),

26
ScopeDefinition (class in morango.models), 34
ScopeDefinition.DoesNotExist, 34

ScopeDefinition.MultipleObjectsReturned, 34
serialize() (morango.models.Certificate method), 26
serialize() (morango.models.SyncableModel

method), 41
serialized (morango.models.Certificate attribute), 26
serializer_class (morango.api.viewsets.BufferViewSet

attribute), 50
serializer_class (morango.api.viewsets.CertificateViewSet

attribute), 51
serializer_class (morango.api.viewsets.NonceViewSet

attribute), 51
serializer_class (morango.api.viewsets.PublicKeyViewSet

attribute), 51
serializer_class (morango.api.viewsets.SyncSessionViewSet

attribute), 52
serializer_class (morango.api.viewsets.TransferSessionViewSet

attribute), 52
server_certificate (morango.models.SyncSession

attribute), 39
server_certificate_id

(morango.models.SyncSession attribute),
39

server_fsic (morango.models.TransferSession at-
tribute), 44

server_info (morango.sync.syncsession.NetworkSyncConnection
attribute), 48

server_instance_data (morango.models.SyncSession
attribute), 39

server_instance_id (morango.models.SyncSession
attribute), 39

server_instance_json (morango.models.SyncSession
attribute), 39

server_ip (morango.models.SyncSession attribute), 40
session (morango.sync.syncsession.NetworkSyncConnection

attribute), 48
session (morango.sync.syncsession.SyncClientSignals

attribute), 49
SessionWrapper (class in morango.sync.session), 46
SharedKey (class in morango.models), 35
SharedKey.DoesNotExist, 35
SharedKey.MultipleObjectsReturned, 35
sign() (morango.models.Certificate method), 26
sign_certificate() (morango.models.Certificate

method), 26
signals (morango.sync.syncsession.PullClient at-

tribute), 48
signals (morango.sync.syncsession.PushClient at-

tribute), 48
signals (morango.sync.syncsession.SyncSessionClient

attribute), 49
signals (morango.sync.syncsession.TransferClient at-

tribute), 50
signature (morango.models.Certificate attribute), 26
start_timestamp (morango.models.SyncSession

62 Index



morango Documentation

attribute), 40
start_timestamp (morango.models.TransferSession at-

tribute), 44
Store (class in morango.models), 36
Store.DoesNotExist, 36
Store.MultipleObjectsReturned, 36
store_model (morango.models.RecordMaxCounter at-

tribute), 33
store_model_id (morango.models.RecordMaxCounter

attribute), 33
sync_connection (morango.sync.syncsession.PullClient

attribute), 48
sync_connection (morango.sync.syncsession.PushClient

attribute), 48
sync_connection (morango.sync.syncsession.SyncSessionClient

attribute), 49
sync_connection (morango.sync.syncsession.TransferClient

attribute), 50
sync_session (morango.models.TransferSession

attribute), 44
sync_session (morango.sync.syncsession.PullClient at-

tribute), 48
sync_session (morango.sync.syncsession.PushClient

attribute), 48
sync_session (morango.sync.syncsession.SyncSessionClient

attribute), 49
sync_session (morango.sync.syncsession.TransferClient

attribute), 50
sync_session_id (morango.models.TransferSession at-

tribute), 44
SyncableModel (class in morango.models), 40
SyncableModel.Meta (class in morango.models), 40
SyncableModelManager (class in morango.models), 41
SyncableModelQuerySet (class in morango.models),

41
SyncClientSignals (class in

morango.sync.syncsession), 48
SyncSession (class in morango.models), 37
SyncSession.DoesNotExist, 38
SyncSession.MultipleObjectsReturned, 38
SyncSessionClient (class in

morango.sync.syncsession), 49
syncsessions_client (morango.models.Certificate at-

tribute), 26
syncsessions_server (morango.models.Certificate at-

tribute), 26
SyncSessionViewSet (class in morango.api.viewsets),

51
system_id (morango.models.InstanceIDModel at-

tribute), 31
sysversion (morango.models.InstanceIDModel at-

tribute), 31

T
timestamp (morango.models.Nonce attribute), 32
to_python() (morango.models.PrivateKeyField

method), 32
to_python() (morango.models.PublicKeyField

method), 32
to_python() (morango.models.UUIDField method), 45
transfer_session (morango.models.Buffer attribute),

24
transfer_session (morango.models.RecordMaxCounterBuffer

attribute), 33
transfer_session_id (morango.models.Buffer at-

tribute), 24
transfer_session_id

(morango.models.RecordMaxCounterBuffer
attribute), 34

transfer_stage (morango.models.TransferSession at-
tribute), 44

transfer_stage_status
(morango.models.TransferSession attribute),
44

TransferClient (class in morango.sync.syncsession),
49

transferring (morango.sync.syncsession.SyncClientSignals
attribute), 49

TransferSession (class in morango.models), 41
TransferSession.DoesNotExist, 42
TransferSession.MultipleObjectsReturned, 42
transfersession_set (morango.models.SyncSession

attribute), 40
TransferSessionViewSet (class in

morango.api.viewsets), 52
tree_id (morango.models.Certificate attribute), 27

U
update() (morango.api.viewsets.TransferSessionViewSet

method), 52
update() (morango.models.SyncableModelQuerySet

method), 41
update_fsics() (morango.models.DatabaseMaxCounter

class method), 28
update_state() (morango.models.TransferSession

method), 44
urlresolve() (morango.sync.syncsession.NetworkSyncConnection

method), 48
use_nonce() (morango.models.Nonce class method), 32
uuid_input_fields (morango.models.Certificate at-

tribute), 27
uuid_input_fields (morango.models.DatabaseIDModel

attribute), 28
uuid_input_fields (morango.models.InstanceIDModel

attribute), 31
uuid_input_fields (morango.models.Nonce at-

tribute), 32

Index 63



morango Documentation

uuid_input_fields (morango.models.UUIDModelMixin
attribute), 45

UUIDField (class in morango.models), 44
UUIDModelMixin (class in morango.models), 45
UUIDModelMixin.Meta (class in morango.models), 45

V
verify() (morango.models.Certificate method), 27
version (morango.models.ScopeDefinition attribute), 35

W
write_filter_template

(morango.models.ScopeDefinition attribute),
35

64 Index


	Overview
	Motivating user story
	Objectives
	Usage in Kolibri

	Architecture
	Profiles
	Syncable models
	Partitions
	Filters and scopes
	Certificates
	Session controller, contexts, and operations

	Syncing
	Concepts
	Process
	Orchestration
	Signals

	IDs and Counters
	Identifiers
	Counters

	Merging
	Fast-forward merges
	Merge conflicts

	Deletion
	Soft-deletion
	Hard-deletion

	API
	Models
	Sync sessions
	Viewsets
	Permissions

	Python Module Index
	Index

